Published on

Fourier Analysis 1

Authors

Fourier Analysis 1

The first Fourier analysis lecture on 15/01/2024 began with a general introduction to the concepts of the topic.

A Review of Riemann Integration

Let <a<b<+-\infty < a < b < + \infty, then I=[(a,b)]I = [(a,b)] is an interval IRI \subset \mathbb{R}, open, closed or semi-closed. If f:IRf : I \rightarrow \mathbb{R} or (f:ICf : I \rightarrow \mathbb{C}) is a function then we are interested in defining the integral S=abf(x)dxS = \int_a^b f(x)dx.

Definition [Riemann Integration]:

  1. A partition of II is Δ:a=t0<t1<...<tn=b\Delta : a = t_0 < t_1 < ... < t_n = b, of mesh (or norm):
Δ:max0jn1tj+1tj.|\Delta| \coloneq \max*{0 \leq j \leq n-1}|t*{j+1} - t_j|.
  1. The Riemann sum of ff corresponding to Δ\Delta is:
S(f;Δ):j=0n1f(tj)(tj+1tj).S(f;\Delta) \coloneq \sum_{j=0}^{n-1}f(t_j)\cdot (t_{j+1}-t_j).
  1. We say ff is integrable on II, with value of integral s:abf(x)dxs \coloneq \int_a^b f(x)dx, if for all ε>0\varepsilon > 0 there exists a δ>0\delta > 0 such that for every partition Δ\Delta of II of mesh size Δ<δ|\Delta|< \delta we have:
S(f,Δ)s<ε|S(f,\Delta) - s| < \varepsilon

That is:

abf(x)dx:limΔ0S(f,Δ).\int_a^b f(x)dx \coloneq \lim_{|\Delta| \rightarrow 0}S(f,\Delta).

The following facts on Riemann integration were established as part of a standard analysis course:

  1. If a function ff is not bounded on II, then ff is not integrable on II.
  2. The upper (resp. lower) Riemann sums:
U(f;Δ):j=0n1(supt[tj,tj+1]f(t))(tj+1tj)U(f;\Delta) \coloneq \sum_{j=0}^{n-1}\left(\sup_{t \in [t_j,t_{j+1}]}f(t)\right)\cdot (t_{j+1}-t_j)

resp.:

L(f;Δ):j=0n1(inft[tj,tj+1]f(t))(tj+1tj).L(f;\Delta) \coloneq \sum_{j=0}^{n-1}\left(\inf_{t \in [t_j,t_{j+1}]}f(t)\right)\cdot (t_{j+1}-t_j).

Then ff is integrable on II if and only if for every ε>0\varepsilon > 0 there exists a partition Δ\Delta such that:

0U(f,Δ)L(f,Δ)<ε.0 \leq U(f,\Delta) - L(f,\Delta) < \varepsilon .