Published on

Advanced Algebra 1

Authors

Advanced Algebra 1

This is a compiled set of notes separated by topic on advanced algebra, based on lectures at King's College London.

Group theory

Basic definitions and properties

Definition: A group is a set GG with a binary operation \cdot such that:

  1. \cdot is associative
  2. \cdot has an identity element
  3. Every gGg \in G has an inverse.

Examples:

  1. Z\mathbb{Z} with operation ++, denoted (Z,+)(\mathbb{Z},+).
  2. Q×:Q0\mathbb{Q}^{\times} \coloneq \mathbb{Q} - {0} under multiplication.
  3. GLn(R):{n×ninvertible real matrices }GL_n(\mathbb{R}) \coloneq \{n \times n \text{invertible real matrices }\} under matrix multiplication (n \geq 1).
  4. Sn:{permutations of{1,2,3,...,n}}S_n \coloneq \{\text{permutations of} \{1,2,3,...,n\}\}.
  5. More generally SX={bijective functions G:XX}S_X = \{\text{bijective functions } G: X \rightarrow X\} under composition.
  6. Q8:Q_{8} \coloneq quaternion group of order 8 ={±1,±i,±j,±k}= \{\pm 1, \pm i, \pm j, \pm k\} where i2=j2=k2=1i^2=j^2=k^2=-1 and ij=k=jiij=k=-ji.
  7. Product group: If GG and HH are groups then G×HG \times H with G\cdot_G and H\cdot_H operations is a group under (g,h)(g,h)=(gGg,hHh)(g,h)\cdot(g',h') = (g\cdot_G g',h \cdot_H h') e.g. Z×S3\mathbb{Z} \times S_3 is a group.

Notation: Usually just write ghgh for ghg\cdot h, unless (\cdot is ++) and ghkghk for (gh)k=g(hk)(gh)k = g(hk), g1g^{-1} for the inverse of gg, gn=ggn timesg^n = \overbrace{g \cdots g}^{n \ \text{times}} if n>0n>0, gn=(gn)1g^{-n}= (g^n)^{-1} if n>0n>0. g0=eGg^0 = e_G the identity element of GG.

Also note: gmgn=gm+ng^m g^n = g^{m+n} and (gm)n=gmn(g^m)^n = g^{mn} for all gGg \in G and m,nZm,n \in \mathbb{Z}. Note that gnhn(gh)ng^n h^n \neq (gh)^n in general, this only holds if GG is abelian.

Cancellation law: g,h,kGg,h,k \in G a group, gh=gk    h=kgh = gk \implies h=k, likewise for hg=kghg=kg.

Subgroups: A subgroup of a group GG is a subset HGH \subset G such that:

  1. egGe_g \in G
  2. h,hH    hhHh,h' \in H \implies hh' \in H
  3. hH    h1Hh \in H \implies h^{-1} \in H.

Examples: ZQRC.\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}.

ZBGLn(R)Z \subset B \subset GL_n(\mathbb{R}) where ZZ are the nonzero n×nn\times n scalar matrices, BB are the upper-triangular invertible n×nn \times n matrices.

For any gGg \in G, {gnnZ}\{g^n | n \in \mathbb{Z}\} is the cyclic subgroup of GG generated by gg, denoted g\langle g \rangle.

Example: G=ZG = \mathbb{Z}, m={nmnZ}\langle m \rangle = \{nm | n \in \mathbb{Z}\} = multiples of mm Z\subset \mathbb{Z}.

G=G×G = G^{\times}, 3={3nnZ}\langle 3 \rangle = \{3^n | n \in \mathbb{Z}\}. G=S3G = S_3, (123)={e,(123),(132)}\langle (123)\rangle = \{e, (123), (132)\}.

More generally, for any subset SGS \subset G, define the subgroup of GG generated by SS to be:

S=HAH\langle S \rangle = \bigcap_{H \in A} H

where A={subgroups HGSH}A = \{\text{subgroups } H\subset G | S \subset H\}. This is the smallest subgroup of GG containing SS (Exercise).

Example: G=ZG = \mathbb{Z}, m,nZm,n \in \mathbb{Z} not both 00, {m,n}=d\langle \{m,n\} \rangle = \langle d \rangle where d=gcd(m,n)d = gcd(m,n). G=S3G = S_3, not cyclic (not even abelian): S3=(12),(123)S_3 = \langle (12),(123) \rangle.

G=G×G = G^{\times}, 2,3={2a3ba,bZ}\langle 2,3 \rangle = \{2^a3^b | a,b \in \mathbb{Z}\} If GG is a group then G|G| is called the order of GG (may be infinite). If gGg \in G then the order of gg is the order of g\langle g \rangle (may be infinite).

Examples: SnS_n has order n!n!. (12)(12) has order 2, (123)(123) has order 3, (12)(34)(12)(34) has order 2.