Published on

Operators on Infinite Dimensional Vector Spaces Exercises 3

Authors

Exercises 3

Exercise 3.1:

In this exercise, we prove the first generalisation of Schur's test. Prove that under the same conditions as Theorem 3.2, the operator KK is in B(Lp(Ω,μ))\mathcal{B}(L^p(\Omega,\mu)) for every p[1,]p \in [1,\infty], with Schur bound:

Km111pm21p.\|K\| \leq m_1^{1-\frac{1}{p}}m_2^{\frac{1}{p}}.

Here we use the convention that 1=0\frac{1}{\infty} = 0. You may want to treat the cases p{1,}p \in \{1,\infty\} separately.

Exercise 3.2:

In this exercise, we prove a second generalisation of Schur's test. For a measure space (Ω,μ)(\Omega,\mu), p,q[1,]p,q \in [1,\infty] and k:Ω×ΩCk: \Omega \times \Omega \rightarrow \mathbb{C} define:

m1,p,q=(Ω(Ωk(x,y)qdμ(y))pqdμ(x))1pm_{1,p,q} = \left(\int_{\Omega} \left( \int_{\Omega} |k(x,y)|^q d \mu(y)\right)^{\frac{p}{q}} d\mu(x)\right)^{\frac{1}{p}}

and:

m2,p,q=(Ω(Ωk(x,y)qdμ(x))pqdμ(y))1p,m_{2,p,q} = \left(\int_{\Omega} \left( \int_{\Omega} |k(x,y)|^q d \mu(x)\right)^{\frac{p}{q}} d\mu(y)\right)^{\frac{1}{p}},

where for p=p=\infty we interpret (fpdμ)1p=ess supxf(x)(\int |f|^p d\mu)^{\frac{1}{p}} = \text{ess }\sup_x |f(x)|. In this notation, we can also read m1=m1,,1<m_1 = m_{1,\infty,1} < \infty and m2=m2,,1<m_2 = m_{2,\infty,1} < \infty.

Let KK be the integral operator with integral kernel kk.

  • Prove that if p>qp > q, m1,,1<m_{1,\infty,1} < \infty and m2,ppq,1<m_{2,\frac{p}{p-q},1} < \infty, the KB(Lp(Ω),Lq(Ω))K \in \mathcal{B}(L^p(\Omega),L^q(\Omega)) and:
    Km1,,111qm2,ppq,11q.\|K\| \leq m_{1,\infty,1}^{1-\frac{1}{q}}m_{2,\frac{p}{p-q},1}^{\frac{1}{q}}.

Hint: Write kf=k11q(k1qf)kf = k^{1-\frac{1}{q}}(k^{\frac{1}{q}}f) and use Hölder's inequality with exponents (qq1,q)(\frac{q}{q-1},q).

  • Prove that if q>qq > q, m1,,p(q1)q(p1)<m_{1,\infty,\frac{p(q-1)}{q(p-1)}} < \infty and m2,,1<m_{2,\infty,1} < \infty, then KB(Lp(Ω),Lq(Ω))K \in \mathcal{B}(L^p(\Omega), L^q(\Omega)) and:
    Km1,,p(q1)q(p1)11qm2,,11q.\|K\| \leq m_{1,\infty,\frac{p(q-1)}{q(p-1)}^{1-\frac{1}{q}}} m_{2,\infty,1}^{\frac{1}{q}}.

Hint: There is the following generalisation of Hölder's inequality: if uLru \in L^r, vLsv \in L^s and wLtw \in L^t for r1+s1+t1=1r^{-1}+s^{-1}+t^{-1}=1, then uvwL1uvw \in L^1 and:

uvw1urvswt.\|uvw\|_1 \leq \|u\|_r\|v\|_s\|w\|t.

Write kf=(k1qfpq)fqpqk11qkf = (k^{\frac{1}{q}}f^{\frac{p}{q}})f^{\frac{q-p}{q}}k^{1-\frac{1}{q}} and use the generalised Hölder inequality with exponents (q,pqqp,pp1)(q,\frac{pq}{q-p},\frac{p}{p-1}).

Exercise 3.3:

Consider the operator VV acting on L2(0,1)L^2(0,1) given by:

(Vf)(x)=0xf(y)dy;(Vf)(x) = \int_0^x f(y)dy;

VV is called the Volterra operator. Prove that VV is bounded. What is the integral kernel of VV?

Exercise 3.4:

Under what condition on the function rr is the convolution operator self-adjoint? Normal?

Exercise 3.5:

Give an alternative proof of Schur's bound by estimating (Tf,g)|(Tf,g)| for any f,gL2f,g \in L^2.

Exercise 3.6:

Construct an example of an operator whose Hilbert-Schmidt norm is strictly greater than the operator norm. Hint: consider operators on C2\mathbb{C}^2.

Exercise 3.7:

Construct an example of an operator for which the inequality in the Schur bound is strict. Hint: consider operators on C2\mathbb{C}^2.

Exercise 3.8:

Let AA be a self-adjoint operator in B(H)\mathcal{B}(\mathcal{H}). Prove that:

A=supx=1(Ax,x),\|A\| = \sup_{\|x\|=1} |(Ax,x)|,

and find an example which shows that it does not necessarily hold if AA is not self-adjoint.

Exercise 3.9:

Show that TB(H)T \in \mathcal{B}(\mathcal{H}) is normal if and only if Tx=Tx\|Tx\| = \|T^* x\| for all xH.Usingthis,showthatforanormalx \in \mathcal{H}. Using this, show that for a normal T,, |T^2| = |T|^2$.

Exercise 3.10:

Let H\mathcal{H} be a finite dimensional Hilbert space, H=CN\mathcal{H} = \mathbb{C}^N. For AB(H)A \in \mathcal{B}(\mathcal{H}), consider the expression AHS2=Tr(AA)\|A\|_{HS}^2 = \text{Tr}(A^*A).

  1. Prove that HS\|\cdot\|_{HS} is a norm on B(H)\mathcal{B}(\mathcal{H}).
  2. Prove that HS\|\cdot\|_{HS} coincides with the Hilbert-Schmidt norm defined in Example 3.9.
  3. Prove that the Hilbert-Schmidt norm is equivalent to the usual operator norm, i.e. there exist constants C1,C2C_1,C_2 such that for all AB(H)A \in \mathcal{B}(\mathcal{H}):
    C1AAHSC2AC_1 \|A\| \leq \|A\|_{HS} \leq C_2 \|A\|
    (the first inequality always holds but the second inequality is only true for the finite-dimensional case!)
  4. Find the optimal constants C1,C2C_1,C_2.